Improving Study Design and Conduct Efficiency of Event-Driven Clinical **Trials via Discrete Event Simulation: Application to Pediatric Oncology**

Jeffrey S. Barrett^{1,2}, Jeffrey Skolnik^{1,2}, Bhuvana Jayaraman¹, Dimple Patel¹ and Peter C. Adamson^{1,2} bioratory for Applied PK/PD, Division of Clinical Pharmacology & Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA ² University of Pennsylvania, Philadelphia, PA. Laboratory lelphia, PA

Introduction

- Phase I oncology studies use a modified Fibonacci escalation with three patients per dose
- level and dose escalation in phase I trials guided by dose-limiting toxicity (DLT). · Previous exploration of oncology study designs
- have focused on Markov processes alone (probability-based events) without consideration for time dependencies.
- · Barriers to study completion include time delays associated with patient accrual and inevaluability (IE), DLT, and data submission and review.
- Discrete event simulation (DES) incorporates probability-based assignment of DLT and IE frequency and decision logic on time to event.
- · Metrics for comparison of various dose escalation rules include: # subjects to complete trial, time to complete trial (define MTD), and #DLT/trial.

Objectives

- 1. To develop a simulation model to evaluate clinical performance metrics of event-based decision rules typically used in pediatric oncology.
- To investigate study characteristics and features 2. detrimental to study efficiency and propose designs which offer benefit with respect to time-based and exposure-based performance metrics

inuate i use, iulate requisite event prob mple from target distributio each subject, sim rison of time to ever

lable for enroller ntina) for cohor

Compare design proposals via event and
Chart / project study progression metrics

Figure 1: Study level events

of Desig Logic

Design erformar

E ENT Ext N þ Consider another study / protocol \$57. Subject Sta Stat on Trial TTE: Time to Event Event

Table 1: Historical priors Figure 3: Typical study progres 3 4 5 6 7 8 9

Design / Methods

Results

Figure 5: Design checks for study simulation between TTE and ENT

 By cohort composition Event-rate confirmation

Impact of sample size on DES study efficiency metrics with 3+3 decision rule Values reported as arithmetic mean (standard deviation) .

Trials (#)	(Days)	(# subjects)	(# subjects)	(# subjects)	(Cohort #)
100	528.0	16.1	3.14	1.40	2.23
	(115.0)	(3.2)	(1.04)	(1.10)	(0.76)
200	538.0	16.4	3.11	1.39	2.17
	(114.5)	(1.2)	(1.00)	(1.22)	(0.76)
500	541.7	16.4	3.08	1.58	2.23
	(131.9)	(2.7)	(1.03)	(1.36)	(0.86)
1000	537.7	16.3	1.09	1.40	2.15
	(128.5)	(2.4)	(1.05)	(1.29)	(0.81)
2000	530.6	16.3	3.10	1.46	2.14
	(124.4)	(2.4)	(1.10)	(1.28)	(0.85)

Results

		Three-plus-	three desig	0	Rolling six design			
	Duration (days)	Subjects per trial	DLT per trial	Cohorts per trial	Duration (days)	Subjects per trial	DLT per trial	Cohorts per trial
Inter-patient arrival time*								
5 days	256±69	17±4	3±1	3±1	197±53	20±5	3±1	3±1
10 days	350±84	17±4	3±1	3±1	294±75	20±5	3±1	3±1
20 days	538±128	16±4	3±1	3±1	486±121	19±5	3±1	3±1
100 days	2178±519	16±4	3±1	3±1	2112±502	19±5	3±1	3±1
Cycle length**								
28 Days	383±94	16±4	3±1	3±1	315±82	20±5	3±1	3±1
35 Days	432±109	17±4	3±1	3±1	348±89	20±5	3±1	3±1
Increased inevaluability rate (25%)	404±107	18±4	3±1	3±1	322±81	22±5	3±1	3±1
Increased risk of DLT at starting dose***	242±59	12 n 3	3±1	2±1	185±39	13±2	3±1	2±1

Figure 6: Comparison of primary efficiency metrics.

300

200

100 5

 Distribution of number of patients per study
Average inter-patient arrival Average inter-patient. time of 10 days. •On average there are 3 more patients per study using the rolling six design.

Distribution of elapsed time to complete a given study.
Average inter-patient arrival time of 10 days.
On average the rolling six outperforms the 3+3 by 56 days.

Number of DLTs

Distribution of number of DLTs per study.
Average inter-patient arrival time of 10 days.
No difference between number of DLTs between design (N = 3

Figure 7: Comparison of simulated study progression.

Discussion / Conclusions

- A DES approach to event-driven study designs allows consideration of time-based metrics as opposed to Markov-based approaches which typically focus only on event-based outcomes.
- Our SAS-based solution separates the generation of study population pools from design logic; the pediatric oncology case study agrees well with historical data.
- We anticipate using this approach to examine design dependencies for the determination of pediatric MTD and ultimately to redesign phase I conduct with the intention of reducing study duration, bringing new agents to patients faster.
- Using DES, we found that the rolling six method has the potential to significantly decrease the duration of pediatric phase 1 studies.

References

 Lee DP, Skolnik JM, Adamson PC. Pediatric phase 1 trials in oncology: An analysis of study conduct efficiency. J Clin Oncol 23:8431-41, 2005. Skolnik JM, Patel D, Adamson PC, O'Connor, E, Barrett, JS. Timelines for the completion of pediatric cancer trials: A report from the C Oncology Group. American College of Clinical Pharmacology, 2006.

Barrett JS, Jayaraman B, Patel D, et al: Discrete Event Simulation (DES) as a technique to study decision rule efficiency in event-driven clinical designs. American College of Clinical Pharmacology, 2006.

1